Consortium

Universities and Research Institutes:

Coordinator: Consiglio Nazionale delle Ricerche (CNR – Italy) Eidgenössische Technische Hochschule Zürich (ETH – Switzerland) Technische Universität München (TUM – Germany) Centre National de la Recherche Scientifique (CNRS – France) Agenzia Spaziale Italiana (ASI – Italy)

Companies:

Alpes Lasers (Switzerland) IRsweep (Switzerland) ppqSense (Italy) Menlo Systems (Germany) Thales Research & Technology (France)

Main results

August 2020

mbs Performed work and main results

WP1 – Design:

• New QCL active regions for improved frequency comb operation have been designed and optimized. They have the potentiality of exhibiting enhanced nonclassical features in the emission.

WP2 – Fermionic analog simulator:

- A large spacing 1D optical lattice to mimic the multi-well configuration of QCL heterostructures has been realized.
- The behavior/dynamics of the Fermi gas in a single 2D layer is under characterization.

WP2 – Bosonic analog simulator:

- An interferometric protocol producing, separating and recombining multiple copies of a single Bose-Einstein condensate has been developed. A multimode Kapitza-Dirac beam-splitter has been realized.
- To reduce the amplitude of oscillations in the trap we decided to shift to a **"Bragg interferometer"**, where only two momentum components are present. We found that interatomic interactions affect the fringe wave vectors k, both for the free-space and the in-trap Bragg interferometers. Understanding the role of such interactions has a key role for the project.

WP3 – QCL devices Fabrication:

- Several QCL devices have been fabricated employing current technology and distributed among the project partners for characterization.
- **Optimized procedures for fabrication** have been tested and used for fabricating new devices based on the design developed within the project.
- A new waveguide type, including a plasmonic layer in the top cladding, has been developed and realized. The first characterization results look promising. 2

Performed work and main results

WP4 – Characterization of new QCL devices:

- The classical characterization of several QCL devices has been performed (frequency/intensity noise), showing good results in terms of spectral coverage, frequency and amplitude noise. The parameter will be used as benchmarks for future characterizations of optimized devices.
- The **quest for nonclassical features (squeezing)** in the new QCLs emission started. The search for nonclassical features in QCL-combs emission is **ongoing**, results are expected in the second project period.
- The **new devices** have been **tested for applications** such as dual-comb spectrometers.

WP6 – Dissemination:

- In total, **11 peer-reviewed papers** regarding the results obtained within the project have been **published** (or are in press) in high-impact international journals.
- Several people involved in the project participated to numerous **international conferences** disseminating the obtained results.
- The organization of an international conference on QCLs is ongoing (IQCLSW 2020).

Main results - Summary

Objective	Achievement	Still to realize
Design and fabrication of new QCL devices	Numerically-optimized devices realized	Quantum-simulation- optimized devices realized
Realization of a quantum simulator of QCLs transport	Large spacing 1D optical lattice to mimic QCL potential	Loading the atoms, simulating transport
Demonstration of nonclassical features in QCL emission	Implementation of a mid- infrared balanced detector, characterization of detectors, discovery of optimal laser operating condition for investigation	Demonstration of squeezed/ entangled emission, test of several devices
Applications (sensing, communication, range find, anemometry)	New devices to be used for applications fabricated, dual- comb spectrometer tested	Development of the applications