

Bosonic "leg": simulation of frequency comb with atomic comb of momentum components

To investigate the existence of quantum correlations in the emission of QCL-comb, we aim to engineer an atomic analog based on momentum states

T2.4: Arbitrarily filtered, multimode, Kapitza-Dirac interferometer (CNR; M1-M18)

T2.5: Generation and detection of quantum correlations (CNR; M1-M24)

T2.6: Controlling interactions to control quantum correlations (CNR; M18-M36)

T2.4: Arbitrarily filtered, multimode, Kapitza-Dirac interferometer (M1-M18)

The multiple momentum components corresponding to the comb photonic modes will be obtained from a single trapped Bose-Einstein condensate (BEC), by means of a Kapitza-Dirac pulse.

We will implement the established protocol of trapped Kapitza-Dirac interferometry using a BEC of 87Rb atoms. As a new resource, we will develop an arbitrary "momentum filter" to remove components at will. The use of light masks generated by DMD will grant arbitrary selections.

D2.3: Implementation of Kapitza-Dirac multimode beam-splitter and interferometer (M18)

Proposed by Li et al. [PRL 113, 023003 (2014)], partially realized in experiment by R.E. Sapiro et al. [PRA 79, 043630 (2009)]

Our sample is elongated 3D condensate

Choice: split along short axis (stronger confinement) to minimize overlap time.

The comb of momentum states MUST be aligned along a normal axis of the harmonic oscillator trap

Hybrid trap

Magnetic quadrupole potential + single beam optical potential

Lattice direction (x) orthogonal to quadrupole axis (z) and optical trap wavevector (y)

Trap frequencies: $(\omega_x, \omega_y, \omega_z) = 2\pi$ (70, 13, 65) Hz N = 3x10⁵ atoms, Thomas-Fermi radii $(R_x, R_y, R_z) = (6,34,7) \mu m$

Multimode Kapitza-Dirac interferometer

 $\boldsymbol{p}_r = \hbar \boldsymbol{k}$ $\boldsymbol{v}_r = 3.8 \ mm/s$

 $d = 2v_r \Delta t$

ombs

Combs "Trampoline" Kapitza-Dirac interferometer

$$\begin{split} \varphi(r) &= \varphi_l(r) + \varphi_r(r)e^{\Phi} \\ n(r,t) &= n_l(r,t) + n_r(r,t) + 2\sqrt{n_l(r,t)n_r(r,t)}\cos\left(\frac{md}{\hbar t}x + \Phi\right) \\ \lambda &= \frac{ht}{md} \end{split}$$

 $d = 2v_r \Delta t$

Multimode Kapitza-Dirac interferometer

mbs

Trapped Kapitza-Dirac interferometer

Kapitza-Dirac pulse and subsequent evolution in trap

trap time [ms]

1st pulse, 10µs

Images after long TOF (32ms) \rightarrow momentum distribution

Trapped Kapitza-Dirac interferometer

Kapitza-Dirac pulse and subsequent evolution in trap

trap time [ms]

1st pulse, 10µs

2nd pulse , $10 \mu s$

Images after long TOF (32ms) \rightarrow momentum distribution

Issues with trapped KD interferometer

Anharmonicity: since oscillation amplitude $2v_R/\omega \sim$ laser beam size, BEC at $2v_R$, frequency 52Hz BEC at $4v_R$, frequency 66Hz

• Motion excited along transverse direction

 $\rightarrow\,$ momentum components do not overlap after trap half-period

Solutions:

- reduce oscillation amplitude (easy)
- reduce lattice wavevector (more difficult)

Bragg, long pulse \rightarrow energy conservation, only $-v_R$ and $+v_R$ same kin. En.

Advantages: (i) only 2 BECs;

(ii) amplitude of trap oscillations is half

Bragg interferometer, free space

Lattice pulses along horizontal direction

Absorption imaging, after TOF

Qombs Bragg free-fall ``trampoline'' interferometer

M. Robert-de-Saint-Vincent et al. EPL, 89 (2010) 10002

Multiple Bragg pulses: max efficiency at Δt = fall time \rightarrow measure gravity (rel. unc. 4 10⁻⁴)

Bragg interferometer, free space

 $\imath bs$

Qombs Bragg interferometer in trap, fringe spacing

Small wavevector lattice developed by L. Masi, T. Petrucciani and M. Fattori, benefit: reduce v_R hence oscillation amplitude, hence anharmonicity

$$d_{1} = \frac{\lambda_{1}}{2} \quad V_{0} \cos^{2}(k_{1}x)$$

$$d_{2} = \frac{\lambda_{2}}{2} \quad V_{0} \sin^{2}(k_{2}x)$$

Beat-note between two commensurate wavelengths, n

$$\mathbf{n}\,\boldsymbol{\lambda}_1 = (\mathbf{n}+\mathbf{1})\boldsymbol{\lambda}_2$$
$$\mathbf{d} - \frac{n\boldsymbol{\lambda}_1}{\mathbf{n}_1}$$

2

Novel large spacing lattice

Potential equivalent to a large spacing optical lattice

Novel large spacing lattice with ³⁹K

³⁹K benefit:

control of interactions

Currently performing numerical simulations of Kapitza-Dirac trapped interferometer

T2.4: Arbitrarily filtered, multimode, Kapitza-Dirac interferometer (CNR; M1-M18)

The multiple momentum components corresponding to the comb photonic modes will be obtained from a single trapped Bose-Einstein condensate (BEC), by means of a Kapitza-Dirac pulse.

We will implement the established protocol of trapped Kapitza-Dirac interferometry using a BEC of 87Rb atoms. As a new resource, we will develop an arbitrary "momentum filter" to remove components at will. The use of light masks generated by DMD will grant arbitrary selections.

High-resolution imaging system

Diffraction-limited resolution:

$$r = \frac{1.22\lambda}{2n\sin\theta} = \frac{0.61\lambda}{NA} = 1.2\,\mu m$$

22

Design of objective

III Surface Data	
✓ × ^{15.0}	UW 1 - Lens Drawing *
?	🔜 孤 🔕 💥 😫 🌑 🛄 🎶
Gen Setup Wavelength Variables Draw On Group Note	66334 UNITS: MM FOCAL LENGTH = 39.34 NA = 0.3813 DES: Alessia
Ent beam radius 15.000000 Field angle 5.7296e-05 Primary wavln 0.78	9.88
SRF RADIUS THICKNESS APERTURE RADIUS GLASS SPECI 0BJ 0.000000 1.0000e+20 1.0000e+14 AIR	HA I
1 24.681000 15.500000 20.000000 K L-BAL35 C A	T THE
3 200.000000 2.400000 15.000000 K N-FK51A C	
AST 335.000000 5.907572 V 15.000000 AK AIR 5.000000 5.000000 27.500000 K EC463-65 C	
6 0.000000 14.885391 27.500000 K AIR	ANR A
IMS 0.000000 0.000000 0.001901 S F	XIAN
OSLO, https://www.lambdares.com/edu/	

Point Spread Function

Design of objective case

Presence of time-varying magnetic fields: rigid plastic material, PEEK

Integration with existing setup

Objective+Flip-Mirror

• D2.3: Implementation of Kapitza-Dirac multi-mode beam-splitter and interferometer (CNR, M18)

Kapitza-Dirac multimode: anharmonicity detected and explained Bragg two modes in trap demonstrated Fringe spacing explained with numerical simulations, phase stability under investigation Novel large spacing lattice and ³⁹K to control interactions

• DMD momentum filter

Design and assembly of objective, under test now Modified setup to integrate objective

Following are back-up slides

Evolution in Trap for short times

At t = 0 first pulse at $\Delta t < \frac{1}{\omega}$ second pulse ($\Delta t \approx 1ms, \omega = 2\pi \cdot 70 Hz$)

$$k = \frac{m}{\hbar} \frac{1}{1 + \omega^2 t_{\text{TOF}}^2} \left(\delta v + \frac{\delta x}{t_{\text{TOF}}} \omega t_{\text{TOF}} \right)$$

$$\delta v = 0 \ e \ t_{TOF} > \omega^{-1} \to k = \frac{md}{\hbar t_{TOF}}$$

Interference fringes after 32 ms TOF

 $\begin{aligned} x(t) &= \frac{2v_r}{\omega} \sin(\omega t) \approx 2v_r t, \\ v(t) &= 2v_r \cos(\omega t) \approx 2v_r \end{aligned}$

$$d = 2\nu_r \Delta t = 7.6 \,\mu m$$
$$\lambda = \frac{ht}{md} = 19.2 \,\mu m$$

Numerical simulations for different interactions

change scattering length a, fix delay and Δt

effects of interactions:

- fringes spacing
- fringes shape
- condensates positions

Image fit, interferometer phase

Interferometer phase, Bragg ToF

Port comparison, Bragg ToF

Phase – Bragg in trap

